QTL and genetic analysis controlling fiber quality traits using paternal backcross population in upland cotton
Aug 28, 2020

Breeding & Genetic improvement Biomol - Biotechnology JCR
[Background] Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Quantitative trait loci (QTL) mapping provides a powerful approach to dissect the molecular mechanism in fiber quality traits. In present study, F14recombinant inbred line (RIL) population was backcrossed to paternal parent for a paternal backcross (BC/P) population, deriving from one upland cotton hybrid. Three repetitive BC/P field trials and one maternal backcross (BC/M) field trial were performed including both two BC populations and the original RIL population.

[Result] In total, 24 novel QTLs are detected for fiber quality traits and among which 13 QTLs validated previous results. Thirty-five QTLs in BC/P populations explain 5.01%–22.09% of phenotype variation (PV). Among the 35 QTLs, 23 QTLs are detected in BC/P population alone. Present study provides novel alleles of male parent for fiber quality traits with positive genetic effects. Particularly, qFS-Chr3–1 explains 22.09% of PV in BC/P population, which increaseds 0.48 cN·tex− 1 for fiber strength. A total of 7, 2, 8, 2 and 6 QTLs explain over 10.00% of PV for fiber length, fiber uniformity, fiber strength, fiber elongation and fiber micronaire, respectively. In RIL population, six common QTLs are detected in more than one environment: qFL-Chr1–2qFS-Chr5–1qFS-Chr9–1qFS-Chr21–1qFM-Chr9–1 and qFM-Chr9–2. Two common QTLs of qFE-Chr2–2(TMB2386-SWU12343) and qFM-Chr9–1 (NAU2873-CGR6771) explain 22.42% and 21.91% of PV. The region between NAU4034 and TMB1296 harbor 30 genes (379 kb) in A05 and 42 genes (49 kb) in D05 for fiber length along the QTL qFL-Chr5–1 in BC/P population, respectively. In addition, a total of 142 and 46 epistatic QTLs and QTL × environments (E-QTLs and QQEs) are identified in recombinant inbred lines in paternal backcross (RIL-P) and paternal backcross (BC/P) populations, respectively.

[Conclusion] The present studies provide informative basis for improving cotton fiber quality in different populations.
[Title] QTL and genetic analysis controlling fiber quality traits using paternal backcross population in upland cotton

[Authors] MA LingLing, SU Ying, NIE Hushuai, CUI Yupeng, CHENG Cheng, IJAZ Babar & HUA  Jinping

Journal of Cotton Research 2020, 322

https://doi.org/10.1186/s42397-020-00060-6
Be the first to comment this